JAIST Repository >
b. 情報科学研究科・情報科学系 >
b11. 会議発表論文・発表資料等 >
b11-1. 会議発表論文・発表資料 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/18194
|
タイトル: | Hierarchical Prosody Analysis Improves Categorical and Dimensional Emotion Recognition |
著者: | Li, Xingfeng Guo, Taiyang Hu, Xinhui Xu, Xinkang Dang, Jianwu Akagi, Masato |
発行日: | 2021-12 |
出版者: | APSIPA |
誌名: | Proceedings, APSIPA Annual Summit and Conference 2021 |
開始ページ: | 700 |
終了ページ: | 704 |
抄録: | Extracting reliable speech features is one of the most fundamental difficulties in emotion recognition systems.
The extraction of spectral features has drawn much research attention but the extraction of prosody features, studying emotional cues, was often done by calculating statistics at an utterance level. However, the detailed prosody of different linguistic units can contain a large amount of emotion-related information. In this paper, we propose a novel hierarchical prosody analysis strategy by wavelet decomposition that models multi-level emotion transition phenomena. Our approach was evaluated on the IEMOCAP corpus and performed the best compared with state-of-the-art alternatives for both categorical and dimensional emotion recognition tasks, enabling the advancement of capturing dynamics in emotion expressions. |
Rights: | Copyright (C) 2021 APSIPA. This material is posted here with permission of APSIPA (Asia-Pacific Signal and Information Processing Association). Xingfeng Li, Taiyang Guo, Xinhui Hu, Xinkang Xu, Jianwu Dang; Masato Akagi, Proceedings of APSIPA Annual Summit and Conference 2021,pp.700-704 |
URI: | http://hdl.handle.net/10119/18194 |
資料タイプ: | publisher |
出現コレクション: | b11-1. 会議発表論文・発表資料 (Conference Papers)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
APSIPA0000700.pdf | | 597Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|