JAIST Repository >
School of Information Science >
Conference Papers >
Conference Papers >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10119/11620

Title: Computational Complexity of Piano-Hinged Dissections
Authors: Abel, Zachary
Demaine, Erik D.
Demaine, Martin L.
Horiyama, Takashi
Uehara, Ryuhei
Keywords: Piano-hinged dissection
paper folding
computational complexity
NP-completeness
Issue Date: 2013-03
Magazine name: The 29th European Workshop on Computational Geometry (EuroCG 2013)
Start page: 147
End page: 150
Abstract: We prove NP-completeness of deciding whether a given loop of colored right isosceles triangles, hinged together at edges, can be folded into a specified rectangular three-color pattern. By contrast, the same problem becomes polynomially solvable with one color or when the target shape is a tree-shaped polyomino.
Rights: Copyrights of the article is maintained by the authors. Zachary Abel, Erik D. Demaine, Martin L. Demaine, Takashi Horiyama and Ryuhei Uehara, The 29th European Workshop on Computational Geometry (EuroCG 2013), 2013, 147-150.
URI: http://hdl.handle.net/10119/11620
Material Type: publisher
Appears in Collections:b11-1. 会議発表論文・発表資料 (Conference Papers)

Files in This Item:

File Description SizeFormat
19456.pdf1209KbAdobe PDFView/Open

All items in DSpace are protected by copyright, with all rights reserved.

 


Contact : Library Information Section, Japan Advanced Institute of Science and Technology