JAIST Repository >
School of Information Science >
Conference Papers >
Conference Papers >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10119/11620
|
Title: | Computational Complexity of Piano-Hinged Dissections |
Authors: | Abel, Zachary Demaine, Erik D. Demaine, Martin L. Horiyama, Takashi Uehara, Ryuhei |
Keywords: | Piano-hinged dissection paper folding computational complexity NP-completeness |
Issue Date: | 2013-03 |
Magazine name: | The 29th European Workshop on Computational Geometry (EuroCG 2013) |
Start page: | 147 |
End page: | 150 |
Abstract: | We prove NP-completeness of deciding whether a given loop of colored right isosceles triangles, hinged together at edges, can be folded into a specified rectangular three-color pattern. By contrast, the same problem becomes polynomially solvable with one color or when the target shape is a tree-shaped polyomino. |
Rights: | Copyrights of the article is maintained by the authors. Zachary Abel, Erik D. Demaine, Martin L. Demaine, Takashi Horiyama and Ryuhei Uehara, The 29th European Workshop on Computational Geometry (EuroCG 2013), 2013, 147-150. |
URI: | http://hdl.handle.net/10119/11620 |
Material Type: | publisher |
Appears in Collections: | b11-1. 会議発表論文・発表資料 (Conference Papers)
|
Files in This Item:
File |
Description |
Size | Format |
19456.pdf | | 1209Kb | Adobe PDF | View/Open |
|
All items in DSpace are protected by copyright, with all rights reserved.
|