JAIST Repository >
b. 情報科学研究科・情報科学系 >
b11. 会議発表論文・発表資料等 >
b11-1. 会議発表論文・発表資料 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/12347

タイトル: Iterative identification framework for robust hand-written digit recognition under extremely noisy conditions
著者: Lee, Hosun
Jeong, Sungmoon
Matsumoto, Tadashi
Chong, Nak Young
キーワード: Improved Viterbi algorithm
Sequential image encoding
発行日: 2014-08-18
出版者: Institute of Electrical and Electronics Engineers (IEEE)
誌名: 2014 IEEE International Conference on Automation Science and Engineering (CASE)
開始ページ: 728
終了ページ: 733
DOI: 10.1109/CoASE.2014.6899409
抄録: A new classification framework for noise invariant hand-written digit recognition is proposed, which is based on Turbo decoding technique and Viterbi algorithm known from communication field. The digit image is modeled twodimensionally correlated Markov Chain Model (MCM) and iteratively exploited on horizontal and vertical direction. In order to increase discriminant of Markov Chain models foreach digit, a novel sequence learning algorithm is proposed to obtain sequence map and Markov chain models which represent the each class by minimizing an entropy information of MCMs within individual digit classes. The effectiveness of the proposed algorithm is verified through experiments that can significantly enhance the character classification accuracy under several noise conditions.
Rights: This is the author's version of the work. Copyright (C) 2014 IEEE. 2014 IEEE International Conference on Automation Science and Engineering (CASE), 2014, 728-733. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
URI: http://hdl.handle.net/10119/12347
資料タイプ: author
出現コレクション:b11-1. 会議発表論文・発表資料 (Conference Papers)

このアイテムのファイル:

ファイル 記述 サイズ形式
20324.pdf338KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係