JAIST Repository >
b. 情報科学研究科・情報科学系 >
b11. 会議発表論文・発表資料等 >
b11-1. 会議発表論文・発表資料 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/17573
|
タイトル: | A GAN-based Approach to Communicative Gesture Generation for Social Robots |
著者: | Nguyen, Tan Viet Tuyen ELIBOL, Armagan Nak-Young, Chong |
発行日: | 2021-07 |
出版者: | Institute of Electrical and Electronics Engineers (IEEE) |
誌名: | 2021 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO) |
開始ページ: | 58 |
終了ページ: | 64 |
DOI: | 10.1109/ARSO51874.2021.9542828 |
抄録: | People use a wide range of non-verbal behaviors to signal their intentions in interpersonal relationships. Being echoed by the proven benefits and impact of people’s social interaction skills, considerable attention has been paid to generating non-verbal cues for social robots. In particular, communicative gestures help social robots emphasize the thoughts in their speech, describing something or conveying their feelings using bodily movements. This paper introduces a generative framework for producing communicative gestures to better enforce the semantic contents that social robots express. The proposed model is inspired by the Conditional Generative Adversarial Network and built upon a convolutional neural network. The experimental results confirmed that a variety of motions could be generated for expressing input contexts. The framework can produce synthetic actions defined in a high number of upper body joints, allowing social robots to clearly express sophisticated contexts. Indeed, the fully implemented model shows better performance than the one without Action Encoder and Decoder. Finally, the generated motions were transformed into the target robot and combined with the robot’s speech, with an expectation of gaining broad social acceptance. |
Rights: | This is the author's version of the work. Copyright (C) 2021 IEEE. 2021 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO), 2021, 58-64. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
URI: | http://hdl.handle.net/10119/17573 |
資料タイプ: | author |
出現コレクション: | b11-1. 会議発表論文・発表資料 (Conference Papers)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
ARSO21_0048_FI.pdf | | 4581Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|