JAIST Repository >
b. 情報科学研究科・情報科学系 >
b11. 会議発表論文・発表資料等 >
b11-1. 会議発表論文・発表資料 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/17589

タイトル: Semantic Mapping Based on Image Feature Fusion in Indoor Environments
著者: Jin, Cong
Elibol, Armagan
Zhu, Pengfei
Chong, Nak-Young
キーワード: Semantic mapping
Deep learning
Scene recognition
Image feature fusion
発行日: 2021-10
出版者: Institute of Electrical and Electronics Engineers (IEEE)
誌名: 2021 21st International Conference on Control, Automation and Systems (ICCAS 2021)
開始ページ: 693
終了ページ: 698
DOI: 10.23919/ICCAS52745.2021.9650062
抄録: It is of the utmost importance for the robot to understand human semantic instructions in human-robot interaction. Combining semantic information with SLAM-based maps leads to a semantic map. Deep neural networks are able to extract useful information from the robot’s visual information. In this paper, we integrate the RGB feature information extracted by the classification network and the detection network to improve the robot’s scene recognition ability and make the acquired semantic information more accurate. The image segmentation algorithm labels the areas of interest in the metric map. Furthermore, the fusion algorithm is incorporated to obtain the semantic information of each area, and the detection algorithm recognizes the key objects in the area. We have demonstrated an efficient combination of semantic information with the occupancy grid map toward accurate semantic mapping.
Rights: This is the author's version of the work. Copyright (C) 2021 IEEE. 2021 21st International Conference on Control, Automation and Systems (ICCAS 2021), 2021, pp.693-698. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
URI: http://hdl.handle.net/10119/17589
資料タイプ: author
出現コレクション:b11-1. 会議発表論文・発表資料 (Conference Papers)

このアイテムのファイル:

ファイル 記述 サイズ形式
ICCAS_2021_Jin.pdf1763KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係