JAIST Repository >
b. 情報科学研究科・情報科学系 >
b11. 会議発表論文・発表資料等 >
b11-1. 会議発表論文・発表資料 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/18195
|
タイトル: | Automatic Naturalness Recognition from Acted Speech Using Neural Networks |
著者: | Atmaja, Bagus Tris Sasou, Akira Akagi, Masato |
キーワード: | speech naturalness recognition acted dialogue paralinguistic information speech processing speech analysis |
発行日: | 2021-12 |
出版者: | APSIPA |
誌名: | Proceedings, APSIPA Annual Summit and Conference 2021 |
開始ページ: | 731 |
終了ページ: | 736 |
抄録: | This study proposes an automatic naturalness recognition from an acted dialogue. The problem can be stated that: given speech utterances with their naturalness labels, is it possible to recognize these labels automatically? By what methods? And how to evaluate these methods? We evaluated two supervised classifiers to investigate the possibility of recognizing naturalness automatically in acted speech: long short-term memory and
multilayer perceptron neural networks. These classifiers accept inputs in the form of acoustic features from a speech dataset. Two kinds of acoustic features were evaluated: low-level and high-level features. This initial study on automatic naturalness recognition of speech resulted in a moderate performance of the assessed systems. We measured the performance in concordance correlation coefficients, Pearson correlation coefficients, and root mean square errors. This study opens a potential application of speech processing techniques for measuring naturalness in acted dialogue, which benefits for drama- or movie-making in the future. |
Rights: | Copyright (C) 2021 APSIPA. This material is posted here with permission of APSIPA (Asia-Pacific Signal and Information Processing Association). Bagus Tris Atmaja Akira Sasou and Masato Akagi, Proceedings of APSIPA Annual Summit and Conference 2021 |
URI: | http://hdl.handle.net/10119/18195 |
資料タイプ: | publisher |
出現コレクション: | b11-1. 会議発表論文・発表資料 (Conference Papers)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
APSIPA0000731.pdf | | 307Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|