JAIST Repository >
b. 情報科学研究科・情報科学系 >
b11. 会議発表論文・発表資料等 >
b11-1. 会議発表論文・発表資料 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/18205
|
タイトル: | Procedural Content Generation of Rhythm Games Using Deep Learning Methods |
著者: | Liang, Yubin Li, Wanxiang Ikeda, Kokolo |
キーワード: | Procedural Content Generation Rhythm Game C-BLSTM |
発行日: | 2019-11-04 |
出版者: | Springer |
誌名: | International Conference on Entertainment Computing (ICEC) & Joint Conference on Serious Games (JCSG) |
巻: | 11863 |
開始ページ: | 134 |
終了ページ: | 145 |
DOI: | 10.1007/978-3-030-34644-7_11 |
抄録: | The rhythm game is a type of video game which is popular to many people. But the game contents (required action and its timing) of rhythm game are usually hand-crafted by human designers. In this research, we proposed an automatic generation method to generate game contents from the music file of the famous rhythm game “OSU!” 4k mode. Generally, the supervised learning method is used to generate such game contents. In this research some new methods are purposed, one is called “fuzzy label” method, which shows better performance on our training data. Another is to use the new model C-BLSTM. On our test data, we improved the F-Score of timestamp prediction from 0.8159 to 0.8430. Also, it was confirmed through experiments that human players could feel the generated beatmap is more natural than previous research. |
Rights: | Copyright IFIP International Federation for Information Processing 2019. Yubin Liang, Wanxiang Li, Kokolo Ikeda, Lecture Notes in Computer Science, 11863, 2019, 134-145. The final publication is available at Springer via https://doi.org/10.1007/978-3-030-34644-7_11 |
URI: | http://hdl.handle.net/10119/18205 |
資料タイプ: | author |
出現コレクション: | b11-1. 会議発表論文・発表資料 (Conference Papers)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
I-IKEDA-K-134.pdf | | 1228Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|