JAIST Repository >
b. 情報科学研究科・情報科学系 >
b11. 会議発表論文・発表資料等 >
b11-1. 会議発表論文・発表資料 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/18791
|
タイトル: | Abdominal Multi-Organ Segmentation Based on Feature Pyramid Network and Spatial Recurrent Neural Network |
著者: | Song, Yuhan Elibol, Armagan Chong, Nak Young |
キーワード: | Medical Imaging and Processing Diagnostic Ultrasound Image Segmentation Feature Pyramid Network |
発行日: | 2023-11-22 |
出版者: | Elsevier |
誌名: | IFAC-PapersOnLine |
巻: | 56 |
号: | 2 |
開始ページ: | 3001 |
終了ページ: | 3008 |
DOI: | 10.1016/j.ifacol.2023.10.1426 |
抄録: | As recent advances in AI are causing the decline of conventional diagnostic methods, the realization of end-to-end diagnosis is fast approaching. Ultrasound image segmentation is an important step in the diagnostic process. An accurate and robust segmentation model accelerates the process and reduces the burden of sonographers. In contrast to previous research, we take two inherent features of ultrasound images into consideration: (1) different organs and tissues vary in spatial sizes, (2) the anatomical structures inside human body form a relatively constant spatial relationship. Based on those two ideas, we propose a new image segmentation model combining Feature Pyramid Network (FPN) and Spatial Recurrent Neural Network (SRNN). We discuss why we use FPN to extract anatomical structures of different scales and how SRNN is implemented to extract the spatial context features in abdominal ultrasound images. |
Rights: | Copyright (c) 2023 Authors. Yuhan Song, Armagan Elibol, Nak Young Chong. The 22nd World Congress of the International Federation of Automatic Control (IFAC2023), 2023. This is an Open Access article distributed under the terms of Creative Commons Licence CC-BY-NC-ND [https://creativecommons.org/licenses/by-nc-nd/4.0/]. Original publication is available on IFAC-PapersOnLine via https://doi.org/10.1016/j.ifacol.2023.10.1426. |
URI: | http://hdl.handle.net/10119/18791 |
資料タイプ: | publisher |
出現コレクション: | b11-1. 会議発表論文・発表資料 (Conference Papers)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
N-CHONG-I-0803.pdf | | 1042Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|