JAIST Repository >
b. 情報科学研究科・情報科学系 >
b11. 会議発表論文・発表資料等 >
b11-1. 会議発表論文・発表資料 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/11412
|
タイトル: | Adaptive Point-Based Value Iteration for Continuous States POMDP in Goal-Directed Imitation Learning |
著者: | Pratama, Ferdian Adi Lee, Hosun Lee, Geunho Chong, Nak Young |
キーワード: | Imitation Sequential Decision Making POMDP Motion Planning |
発行日: | 2012-11 |
出版者: | Institute of Electrical and Electronics Engineers (IEEE) |
誌名: | 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI) |
開始ページ: | 249 |
終了ページ: | 254 |
DOI: | 10.1109/URAI.2012.6462987 |
抄録: | In motion planning and robot navigation, continuous domain would be the natural way of representation of state space. However, discretization is needed in order to deal with continuous state space. Results precision depends on the discretization, which leads to a problem of ”curse of dimensionality”. We present a new approximation approach of goal-directed imitation learning algorithm using the point-based value iteration algorithm that deals with continuous domain in motion planning. We demonstrate our algorithm in the V-REP robot simulator, to validate the experimental result. |
Rights: | This is the author's version of the work. Copyright (C) 2012 IEEE. 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 2012, 249-254. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
URI: | http://hdl.handle.net/10119/11412 |
資料タイプ: | author |
出現コレクション: | b11-1. 会議発表論文・発表資料 (Conference Papers)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
19094.pdf | | 436Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|