JAIST Repository >
b. 情報科学研究科・情報科学系 >
b11. 会議発表論文・発表資料等 >
b11-1. 会議発表論文・発表資料 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/17026

タイトル: Non-Prehensile Manipulation Learning through Self-Supervision
著者: Gao, Ziyan
Elibol, Armagan
Chong, Nak Young
キーワード: non-prehensile manipulation
state representation learning
fully convolutional autoencoder
mixture density network
発行日: 2020-11
出版者: Institute of Electrical and Electronics Engineers (IEEE)
誌名: 2020 Fourth IEEE International Conference on Robotic Computing (IRC)
開始ページ: 93
終了ページ: 99
DOI: 10.1109/IRC.2020.00022
抄録: Manipulation is one of most emerging research and development areas in the field of robotics. Recently, state representation learning for control has been gaining attention. In this paper, we proposed a novel learning model based on neural networks in order to sample the actions of the robot to push objects to desired positions. Furthermore, an intuitive method was proposed to enable the robot to collect training data in an efficiently way. Specifically, a fully convolutional network encodes observations into latent space, and a mixture density network is implemented to infer an action distribution, since there are an infinite number of possible actions that may result in the same change of the state of the object. Through extensive experimental simulations and comparisons with the existing models, we demonstrated the efficiency of the proposed method applied to non-prehensile manipulation, such as pushing or rotating of small objects on the table.
Rights: This is the author's version of the work. Copyright (C) 2020 IEEE. 2020 Fourth IEEE International Conference on Robotic Computing (IRC), 2020, pp.93-99. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
URI: http://hdl.handle.net/10119/17026
資料タイプ: author
出現コレクション:b11-1. 会議発表論文・発表資料 (Conference Papers)

このアイテムのファイル:

ファイル 記述 サイズ形式
3399.pdf1403KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係