JAIST Repository >
b. 情報科学研究科・情報科学系 >
b11. 会議発表論文・発表資料等 >
b11-1. 会議発表論文・発表資料 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/18152
|
タイトル: | A Novel Filter Pruning Algorithm for Vision Tasks based on Kernel Grouping |
著者: | Lee, Jongmin Elibol, Armagan Nak-Young, Chong |
発行日: | 2022-07 |
出版者: | Institute of Electrical and Electronics Engineers (IEEE) |
誌名: | 2022 19th International Conference on Ubiquitous Robots (UR) |
開始ページ: | 213 |
終了ページ: | 218 |
DOI: | 10.1109/UR55393.2022.9826290 |
抄録: | Although the size and the computation cost of the state of the art deep learning models are tremendously large, they run without any problem when implemented on computers thanks to the remarkable enhancements and advancements of computers. However, the problem is likely to be faced when the need for deploying them on mobile platforms arises. Model compression techniques such as filter pruning or knowledge distillation help to reduce the size of deep learning models. However the conventional methods contain sorting algorithms therefore they cannot be applied to models that have reshaping layers like involution. In this research, we revisit a model compression algorithm named Model Diet that can be both applied to involution and convolution models. Furthermore, we present its application on two different tasks, image segmentation and depth estimation. |
Rights: | This is the author's version of the work. Copyright (C)2022 IEEE. 2022 19th International Conference on Ubiquitous Robots (UR), 2022, pp.213-218. DOI: 10.1109/UR55393.2022.9826290. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
URI: | http://hdl.handle.net/10119/18152 |
資料タイプ: | author |
出現コレクション: | b11-1. 会議発表論文・発表資料 (Conference Papers)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
UR22_0050_FI.pdf | | 498Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|