JAIST Repository >
b. 情報科学研究科・情報科学系 >
b11. 会議発表論文・発表資料等 >
b11-1. 会議発表論文・発表資料 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/19987
|
タイトル: | IRAF-SLAM: An Illumination-Robust and Adaptive Feature-Culling Front-End for Visual SLAM in Challenging Environments |
著者: | Nguyen Canh, Thanh Nguyen Quoc, Bao Zhang, Haolan Veeraiah, Bupesh Rethinam HoangVan, Xiem Chong, Nak Young |
キーワード: | Robust Front-End Illumination Adaptation Feature Culling Visual SLAM |
発行日: | 2025-09-18 |
出版者: | Institute of Electrical and Electronics Engineers (IEEE) |
誌名: | 2025 European Conference on Mobile Robots (ECMR) |
開始ページ: | 1 |
終了ページ: | 7 |
DOI: | 10.1109/ECMR65884.2025.11163050 |
抄録: | Robust Visual SLAM (vSLAM) is essential for autonomous systems operating in real-world environments, where challenges such as dynamic objects, low texture, and critically, varying illumination conditions often degrade performance. Existing feature-based SLAM systems rely on fixed front-end parameters, making them vulnerable to sudden lighting changes and unstable feature tracking. To address these challenges, we propose “IRAF-SLAM”, an Illumination-Robust and Adaptive Feature-Culling front-end designed to enhance vSLAM resilience in complex and challenging environments. Our approach introduces: (1) an image enhancement scheme to preprocess and adjust image quality under varying lighting conditions; (2) an adaptive feature extraction mechanism that dynamically adjusts detection sensitivity based on image entropy, pixel intensity, and gradient analysis; and (3) a feature culling strategy that filters out unreliable feature points using density distribution analysis and a lighting impact factor. Comprehensive evaluations on the TUM-VI and European Robotics Challenge (EuRoC) datasets demonstrate that IRAF-SLAM significantly reduces tracking failures and achieves superior trajectory accuracy compared to state-of-the-art vSLAM methods under adverse illumination conditions. These results highlight the effectiveness of adaptive front-end strategies in improving vSLAM robustness without incurring significant computational overhead. The implementation of IRAF-SLAM is publicly available at https://thanhnguyencanh.github.io/IRAF-SLAM/. |
Rights: | This is the author's version of the work. Copyright (C) 2025 IEEE. 2025 European Conference on Mobile Robots (ECMR), Padova, Italy, pp. 1-7. DOI: https://doi.org/10.1109/ECMR65884.2025.11163050. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
URI: | http://hdl.handle.net/10119/19987 |
資料タイプ: | author |
出現コレクション: | b11-1. 会議発表論文・発表資料 (Conference Papers)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
N-CHONG-I-0919.pdf | | 1704Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|